skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moshkovitz, Michal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the faithfulness of an explanation system to the underlying prediction model. We show that this can be captured by two properties, consistency and sufficiency, and introduce quantitative measures of the extent to which these hold. Interestingly, these measures depend on the test-time data distribution. For a variety of existing explanation systems, such as anchors, we analytically study these quantities. We also provide estimators and sample complexity bounds for empirically determining the faithfulness of black-box explanation systems. Finally, we experimentally validate the new properties and estimators. 
    more » « less
  2. null (Ed.)
    Recent research has recognized interpretability and robustness as essential properties of trustworthy classification. Curiously, a connection between robustness and interpretability was empirically observed, but the theoretical reasoning behind it remained elusive. In this paper, we rigorously investigate this connection. Specifically, we focus on interpretation using decision trees and robustness to l1-perturbation. Previous works defined the notion of r-separation as a sufficient condition for robustness. We prove upper and lower bounds on the tree size in case the data is r-separated. We then show that a tighter bound on the size is possible when the data is linearly separated. We provide the first algorithm with provable guarantees both on robustness, interpretability, and accuracy in the context of decision trees. Experiments confirm that our algorithm yields classifiers that are both interpretable and robust and have high accuracy. 
    more » « less